Automatic Identification of Organizational Structure in Writing using Machine Learning

Laurence Anthony and George V. Lashkia

Dept. of Computer Science, Faculty of Engineering
Okayama Univ. of Science, 1-1 Ridai-cho, Okayama

anthony@ice.ous.ac.jp lashkia@ice.ous.ac.jp

http://antpc1.ice.ous.ac.jp
Presentation Outline

- Background
- Research Aim
- System Design (Overview)
- Application to Research Abstracts
- Results (Accuracy)
- Results (Effectiveness in the Classroom)
- Software Demonstration
- Conclusions
Background

- Importance of Text Structure
- Studies on Text Structure
 - INTRODUCTIONs - Swales (1990), Anthony (1999)
 - PATENTS - Bazerman (1994)
 - GRANT PROPOSALS - Connor & Mauranen (1999)
 - LEGAL WRITING - Bhatia (1993)
Background

- Problems with Analyzing Text Structure
 - We need a large corpus of text data
 (The text data must ‘ACURATELY’ represent what we hope to study)
 - We need a lot of research time
 (We must analyze a lot of texts)
 - We need good validation and reliability tests
 (Because evaluating structure can be very subjective)

- Most Text Structure Studies are ‘Small Scale’
Background

- Henry et al. (2001)
 - 40 Application Letters
- Tarone et al. (2000)
 - 2 Physics Research Articles
- Connor et al. (1999)
 - 34 Grant Proposals
- Williams (1999)
 - 5 Medical Research Articles
- Anthony (1999)
 - 12 Computer Science Research Article Introductions
Research Aim

- Develop a Computer System to Process Texts and Analyze Text Structure Automatically
 - A 'Machine Learning System’ for text structure
 - Easy to process a large corpus of text data
 - Fast
 - The analytic process would be clearly defined
 - Easy to test the reliability and validity
System Design (Overview)

- **Machine Learning: Unsupervised ? Supervised Learning’?**

- **In Supervised Learning,**
 - Give the system a structural model (set of classes)
 - Give the system examples of the model
 - Tell the system what ‘features’ in the examples are important
 - Define a relation between the classes and the features
 - Classify new text examples by comparing its features with those in each class
System Design (Overview)

- Problems
 - We need a ‘good’ model of structure
 - But there are many models of structure in the literature
 - We need a set of ‘labeled examples’
 - But many systems work well with only a few labeled examples
 - We need a ‘good’ set of features
 - But language contains a LOT of noise words!
 (e.g. a, the, of, in, at, but?, though?, ...)
 - Building a list of features by hand is infeasible
 - We need a ‘good’ relation between the classes and the features
Application of System to Research Abstracts

- Give the system a structure model:
 'Modified’ CARS Model (Swales, 1990: Anthony, 1999)

Move 1 Establishing a Territory
 1.1 Claiming centrality
 1.2 Making topic generalizations
 1.3 Reviewing items of previous research

Move 2 Establishing a niche
 2.1A Counter claming
 2.1B Indicating a gap
 2.1C Question raising
 2.1D Continuing a tradition

Move 3 Occupying the niche
 3.1A Outlining purpose
 3.1B Announcing present research
 3.2 Announcing principal findings
 3.3 Evaluation of research
 3.4 Indicating RA structure
Application of System to Research Abstracts

- **Give the system examples of the model**
 - 100 Abstracts (IEEE Trans. on PDS) divided into 692 labeled ‘Steps Units’ (only examples from 6 classes)
 - 554 Step Units (80%) used for ‘training’ the system
 - 138 Step Units (20%) used for ‘testing’ the system

- **Tell the system what ‘features’ to look at**
 - All word clusters (chunks) up to 5 words long
 - Position of step unit in abstract (i.e. 1st line, 2nd line, ...)

- **(Reduce ‘Noise’ in Features)**
 - Automatically rank words by ‘importance’ using: raw frequency, Information Gain
 - Use only high ranked words
Application of System to Research Abstracts

- “In this paper, we propose a new system.”
 - 1 word chunks
 - in/ this/ paper/ we/ propose/ a/ new/ system
 - 2 word chunks
 - in this/ this paper/ we/ propose/ a/ new/ system
 - 3 words chunks
 - in this paper/ this paper we/ propose/ a/ new/ system
Application of System to Research Abstracts

- “In this paper, we propose a new system.”
 - 1 word chunks
 - in/ this/ paper/ we/ propose/ a/ new/ system
 - 2 word chunks
 - in this/ this paper/ paper we/ we propose/ propose a/ a new/ new system
 - 3 word chunks
 - in this paper/ this paper we/ paper we propose/ we propose a/ propose a new/ a new system
 - ...

-...
Information Gain (IG)

Information Gain (IG) is a commonly used measure in decision tree algorithms to evaluate the quality of a split. It quantifies the reduction in entropy achieved by partitioning the data into subsets based on a particular attribute.

Mathematically, the Information Gain (IG) for a feature w is defined as:

$$Gain(D, w) = Entropy(D) - \sum_{v \in Values(w)} \left(\frac{|D_v|}{|D|} \cdot Entropy(D_v) \right)$$

where $Values(w)$ is the set of all possible values for word w, D_v is the subset of D for which the word w has a value v. D is the dataset, and D_v is the subset of D for which the word w has a value v.

The entropy of a dataset D, $Entropy(D)$, is calculated as:

$$Entropy(D) = \sum_{j=1}^{c} -p_j \log_2 p_j$$

where p_j is the proportion of data (D) in a class j from the set of classes C. This measures the impurity or randomness of the data distribution across classes.
Information Gain (IG)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Raw Frequency</th>
<th>Information Gain (IG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>the</td>
<td>however</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>2_however</td>
</tr>
<tr>
<td>3</td>
<td>to</td>
<td>difficult_to</td>
</tr>
<tr>
<td>4</td>
<td>in</td>
<td>is_often</td>
</tr>
<tr>
<td>5</td>
<td>of</td>
<td>transmitting</td>
</tr>
<tr>
<td>6</td>
<td>is</td>
<td>often</td>
</tr>
<tr>
<td>7</td>
<td>and</td>
<td>not</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>difficult</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>task_migration</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>Process</td>
</tr>
</tbody>
</table>
Define a relation between features and classes
- Use probability of each class and the probability of features (clusters) being in each class

(A NAÏVE BAYES Classifier)

- Class 1 (Claiming Centrality)
- Class 2 (Making topic generalizations)
- Class 3 (Indicating a gap)
- Class 4 (Outlining purpose)
- Class 5 (Announcing principal findings)
- Class 6 (Evaluation of research)

Class 1	Class 1 Prob.	Feat. 1 prob.	Feat. 2 prob.	Feat. 3 prob.	...
Class 2	Class 2 Prob.	Feat. 1 prob.	Feat. 2 prob.	Feat. 3 prob.	...
Class 3	Class 3 Prob.	Feat. 1 prob.	Feat. 2 prob.	Feat. 3 prob.	...
Class 4	Class 4 Prob.	Feat. 1 prob.	Feat. 2 prob.	Feat. 3 prob.	...
Class 5	Class 5 Prob.	Feat. 1 prob.	Feat. 2 prob.	Feat. 3 prob.	...
Class 6	Class 6 Prob.	Feat. 1 prob.	Feat. 2 prob.	Feat. 3 prob.	...
Application of System to Research Abstracts

- Classify the structure of new text examples
 - Choose the most probable class containing the features in each step unit.
 - "This paper is an effort in the same direction"
 (Step 3.1B - Announcing Present Research”)

- Features Contained in Training Data
 - paper (c3), this_paper (c4), is (c14) this (c18) the (c39)
 - 2 (c103) is_an (c364) in (c571)

Step 1.1 Prob. = -2.9498 + -7.0449 + -7.0449 + -4.3368 + ... + -4.4058 = -48.7690
Step 1.2 Prob. = -1.8398 + -7.4899 + -7.4899 + -3.8523 + ... + -3.8790 = -45.5972
Step 2.1B Prob. = -3.1391 + -6.9157 + -6.9157 + -4.3507 + ... + -4.2076 = -47.0826
Step 3.1B Prob. = -1.3335 + -4.1566 + -4.2436 + -4.8497 + ... + -3.9169 = -39.0836
Step 3.2 Prob. = -1.8398 + -6.3677 + -6.3677 + -3.6936 + ... + -3.7837 = -40.8448
Step 3.3 Prob. = -1.5809 + -6.6178 + -6.6178 + -3.7846 + ... + -4.0528 = -43.2638

- Most Probable Step ...
Application of System to Research Abstracts

- Classify the structure of new text examples
 - Choose the most probable class containing the features in each step unit.
 - “2 this paper is an effort in the same direction”
 (Step 3.1B - Announcing Present Research”)

- Features Contained in Training Data
 - paper (c3), this_paper (c4), is (c14) this (c18) the (c39)
 2 (c103) is_an (c364) in (c571)

 Step 1.1 Prob. = -2.9498 + -7.0449 + -7.0449 + -4.3368 + ... + -4.4058 = -48.7690
 Step 1.2 Prob. = -1.8398 + -7.4899 + -7.4899 + -3.8523 + ... + -3.8790 = -45.5972
 Step 2.1B Prob. = -3.1391 + -6.9157 + -6.9157 + -4.3507 + ... + -4.2076 = -47.0826
 Step 3.1B Prob. = -1.3335 + -4.1566 + -4.2436 + -4.8497 + ... + -3.9169 = -39.0836
 Step 3.2 Prob. = -1.8398 + -6.3677 + -6.3677 + -3.6936 + ... + -3.7837 = -40.8448
 Step 3.3 Prob. = -1.5809 + -6.6178 + -6.6178 + -3.7846 + ... + -4.0528 = -43.2638

- Most Probable Step = h step 3.1B = -39.0836
 (Decision is Step 3.1B “Announcing Present Research”)
Results (Classification Accuracy)

- **Classification Accuracy (Overall)**
 - 554 Step Units used for ‘training’ the system (80% of entire data)
 - 138 Step Units used for ‘testing’ the system (20% of entire data)

<table>
<thead>
<tr>
<th>No. of Features</th>
<th>Accuracy (Raw Frequency)</th>
<th>Accuracy (Information Gain)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2208 (all)</td>
<td>56 %</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>51 %</td>
<td>70 %</td>
</tr>
<tr>
<td>700</td>
<td>56 %</td>
<td>70 %</td>
</tr>
<tr>
<td>500</td>
<td>59 %</td>
<td>69 %</td>
</tr>
<tr>
<td>300</td>
<td>59 %</td>
<td>69 %</td>
</tr>
<tr>
<td>100</td>
<td>54 %</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: Random guessing has an accuracy of 16.66% (NOT 50%!) Choosing the most common class = 26%
Results (Classification Accuracy)

- Classification Accuracy (Each Step Unit)
 - Number of features = 700
 - Ranked by Information Gain measure
 - Accuracy (overall) = 70%

<table>
<thead>
<tr>
<th>Class</th>
<th>Step 1.1</th>
<th>Step 1.2</th>
<th>Step 2.1b</th>
<th>Step 3.1b</th>
<th>Step 3.2</th>
<th>Step 3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1.1</td>
<td>2 (43 %)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Step 1.2</td>
<td>0</td>
<td>17 (77 %)</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Step 2.1b</td>
<td>0</td>
<td>2</td>
<td>1 (17 %)</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Step 3.1b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34 (92 %)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Step 3.2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>25 (66 %)</td>
<td>9</td>
</tr>
<tr>
<td>Step 3.3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>17 (61 %)</td>
</tr>
</tbody>
</table>

Note: Classifications correspond with CARS Model ‘moves’ (Accuracy=88% when using ‘second opinion’)
Results (In the classroom)

- A ‘Windows’ Interface
 - To enable researchers, teachers and students to use the system it needs to be easily accessible via a ‘windows’ interface
 - A ‘windows’ system has been built using the programming language PERL 5.6 and PERL/Tk
Results (In the classroom)

Materials Selection by Non-Native Teacher

<table>
<thead>
<tr>
<th>Selection of 7 texts from 10 text corpus</th>
<th>By hand</th>
<th>Using System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to complete tasks</td>
<td>100 min.</td>
<td>28 min. (1 min. for analysis plus time to check results)</td>
</tr>
<tr>
<td>Errors</td>
<td>2/7</td>
<td>1/7</td>
</tr>
</tbody>
</table>
| Comments | "The decisions are fast."
| | "It is simple and easy to complete the task."
| | "I rely too much on the software and stop feeling like doing the analysis myself." |
Results (In the classroom)

- Text Analysis by Non-Native Student

<table>
<thead>
<tr>
<th>Selection of 4 texts from 10 text corpus</th>
<th>By hand</th>
<th>Using System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to complete tasks</td>
<td>38 min.</td>
<td>15 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1 min. for analysis plus time to check results)</td>
</tr>
<tr>
<td>Errors</td>
<td>2/4</td>
<td>0/4</td>
</tr>
</tbody>
</table>

Comments

- “It’s very fast.”
- “The structure is now very clear.”
- “The system has clearly analyzed the structure, what you should do is correct only the part that is strange. So the work is little.”
Conclusions

- A computer system was developed to analyze text structure
 - Learning method: ‘Supervised Learning’
 - Accuracy 70% (88% when using second opinion)
- System errors corresponded with CARS Model ‘moves’
- Effective in the classroom for use by teachers and students
- Runs in Windows environment