Developing a Computer System for Automatically Identifying the Structure of Writing

Laurence Anthony

Dept. of Computer Science, Faculty of Engineering
Okayama Univ. of Science, 1-1 Ridai-cho, Okayama
anthony@ice.ous.ac.jp

http://antpc1.ice.ous.ac.jp
Presentation Outline

- Background
- Research Aim
- System Design
- Application to Research Abstracts
- Results
- Conclusions
Background

- Importance of Text Structure

- Studies on Text Structure
 - INTRODUCTIONS - Swales (1990), Anthony (1999)
 - PATENTS - Bazerman (1994)
 - GRANT PROPOSALS - Connor & Mauranen (1999)
 - LEGAL WRITING - Bhatia (1993)
Background

- **Problems with Analyzing Text Structure**
 - A large corpus of text data
 (The text data must ‘ACURATELY’ represent what we hope to study)
 - A lot of research time
 (Time to analyze a lot of texts)
 - Good validation and reliability tests

- **Most Text Structure Studies are ‘Small Scale’**
Background

- Swales (1981: p.13)

“In effect, the discourse analyst labels something as X and then begins to see X occurring all over the place”
Background

- **Henry et al. (2001)**
 - 40 Application Letters

- **Tarone et al. (2000)**
 - 2 Physics Research Articles

- **Connor et al. (1999)**
 - 34 Grant Proposals

- **Williams (1999)**
 - 5 Medical Research Articles

- **Anthony (1999)**
 - 12 Computer Science Research Article Introductions
Research Aim

- Develop a Computer System to Process and Analyze Text Structure Automatically
 - A ‘Learning System’ for text structure

- Easy to Process a Large Corpus of Text Data
- Fast
- The analytic process is clearly defined
- Easy to test the reliability and validity
System Design

‘Unsupervised Learning’ vs. ‘Supervised Learning’?

In Unsupervised Learning,

- Give the system text examples
- Tell the system what ‘features’ to look at
- Let the system find a model (set of classes) by defining a relation between the features and the examples
- Classify new text examples by comparison with features in each class
Unsupervised Learning

- Give the system text examples
 - Text 1: Once upon a time, there was a ugly duckling.
 - Text 2: It lived on a lake.
 - Text 3: One day, the little bird turned into a swan.
 - Text 4: It lived happily, ever, after.

- Tell the system what ‘features’ to look at
 - All words except articles, No punctuation

- Define a relation between features and examples
 - Class 1 - once, upon, time, there, was, ugly, duckling
 - Class 2 - one, day, little, bird, turned, into, swan
 - Class 3 - it, lived, on, lake, happily, ever, after
Unsupervised Learning

- Unsupervised learning system models often **DO NOT** match our models

- Classify new text examples
 - Once upon a time, there were 3 bears (BEG)
 - The 3 bears lived in a big house. (MID)
 - They all stayed in the house happily ever after. (END)

- The system will decide ...
 - Class 1 (matching ‘once’, ‘upon’, ‘time’, ‘there’)
 - Class 3 (matching ‘lived’)
 - Class 3 (matching ‘happily’, ‘ever’, ‘after’)

Once upon a time, there were 3 bears (BEG)
The 3 bears lived in a big house. (MID)
They all stayed in the house happily ever after. (END)
System Design

‘Unsupervised Learning’ vs. ‘Supervised Learning’?

In Supervised Learning,

- Give the system a structure model (set of classes)
- Give the system examples of the model
- Tell the system what ‘features’ to look at
- Define a relation between the classes and the features
- Classify new text examples by comparison with features in each class
Supervised Learning

- Give the system a structure model (set of classes)
 - Class 1: BEGINNING
 - Class 2: MIDDLE
 - Class 3: END

- Give the system examples of the model
 - BEG: Once upon a time, there was a ugly duckling.
 - MID: It lived on a lake.
 - MID: One day, the little bird turned into a swan.
 - END: It lived happily, ever, after.

- Tell the system what ‘features’ to look at
 - All words except articles and punctuation
Supervised Learning

- Define a relation between classes and features
 - Class 1 (BEG) - once, upon, time, there, was, ugly, duckling
 - Class 2 (MID) - it, lived, on, lake, one, day, little, bird, turned, into, swan
 - Class 3 (END) - lived, happily, ever, after

- Classify new text examples
 - Once upon a time, there were 3 bears (BEG)
 - The 3 bears lived in a big house. (MID)
 - They all lived in the house happily ever after. (END)

- The system will decide...
 - Class 1 (BEG) (matching ‘once’, ‘upon’, ‘time’, ‘there’)
 - Class 2 (MID) (matching ‘lived’)
 - Class 3 (END) (matching ‘lived’, ‘happily’, ‘ever’, ‘after’)

Once upon a time, there were 3 bears (BEG)
The 3 bears lived in a big house. (MID)
They all lived in the house happily ever after. (END)
Supervised Learning

Problem

- We need labeled examples

But, many systems work well with only a few labeled examples
Application of System to Research Abstracts

- Give the system a structure model:
 'Modified’ CARS Model (Swales, 1990: Anthony, 1999)

Move 1 Establishing a Territory
 1.1 Claiming centrality
 1.2 Making topic generalizations
 1.3 Reviewing items of previous research

Move 2 Establishing a niche
 2.1A Counter claming
 2.1B Indicating a gap
 2.1C Question raising
 2.1D Continuing a tradition

Move 3 Occupying the niche
 3.1A Outlining purpose
 3.1B Announcing present research
 3.2 Announcing principal findings
 3.3 Evaluation of research
 3.4 Indicating RA structure
Application of System to Research Abstracts

- **Give the system examples of the model**
 - 100 Abstracts (IEEE Trans. on PDS) divided into 692 labeled ‘Steps Units’ (only examples from 6 classes)
 - 554 Step Units (80%) used for ‘training’ the system
 - 138 Step Units (20%) used for ‘testing’ the system

- **Tell the system what ‘features’ to look at**
 - All words (no punctuation, numbers)
 - Position of step unit in abstract (i.e. 1st, 2nd, 3rd, ...)

- **(Reduce ‘Noise’ in Features)**
 - Rank words by ‘importance’ using frequency
 - Rank words by ‘importance’ using χ^2 measure
 - Use the first x no. of words (2208 words total)
Application of System to Research Abstracts

- Define a relation between features and model
 - Use probability of words (features) being in each class
 Probability = Frequency of Word/Total number of words
 - Class 1 (Claiming Centrality)
 - Class 2 (Making topic generalizations)
 - Class 3 (Indicating a gap)
 - Class 4 (Outlining purpose)
 - Class 5 (Announcing principal findings)
 - Class 6 (Evaluation of research)

- Class 1: Word 1 prob Word 2 prob Word 3 prob. ...
- Class 2: Word 1 prob Word 2 prob Word 3 prob. ...
- Class 3: Word 1 prob Word 2 prob Word 3 prob. ...
- Class 4: Word 1 prob Word 2 prob Word 3 prob. ...
- Class 5: Word 1 prob Word 2 prob Word 3 prob. ...
- Class 6: Word 1 prob Word 2 prob Word 3 prob. ...
Application of System to Research Abstracts

- **Classify new text examples**
 - For each new text, choose class with highest probability of having words (features)

 e.g. New Text only has features 3, 8, 10
 - Class 1 P = p. f3 x p. f8 x p. f10 = 1.5
 - Class 2 P = ... = 1.8
 - Class 3 P = ... = 2.7
 - Class 4 P = ... = 2.3
 - Class 5 P = ... = 1.8
 - Class 6 P = ... = 1.2

- **Choose Class 3**
Results

Classification Accuracy (Overall)

- 554 Step Units used for ‘training’ the system
- 138 Step Units used for ‘testing’ the system

<table>
<thead>
<tr>
<th>No. of Features</th>
<th>Accuracy (Ranked by Freq)</th>
<th>Accuracy (Ranked by chi²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2208 (all)</td>
<td>56 %</td>
<td>56 %</td>
</tr>
<tr>
<td>1000</td>
<td>51 %</td>
<td>60 %</td>
</tr>
<tr>
<td>700</td>
<td>56 %</td>
<td>60 %</td>
</tr>
<tr>
<td>500</td>
<td>59 %</td>
<td>64 %</td>
</tr>
<tr>
<td>300</td>
<td>59 %</td>
<td>59 %</td>
</tr>
<tr>
<td>100</td>
<td>54 %</td>
<td>59 %</td>
</tr>
</tbody>
</table>

Note: Random guessing has an accuracy of 16.66% (NOT 50%)!
Choosing the most common class = 26%
Results

Classification Accuracy (Each Step Unit)

- Number of features = 500
- Ranked by χ^2 measure
- Accuracy (overall) = 64%

<table>
<thead>
<tr>
<th>Class</th>
<th>Step 1.1</th>
<th>Step 1.2</th>
<th>Step 2.1b</th>
<th>Step 3.1b</th>
<th>Step 3.2</th>
<th>Step 3.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1.1</td>
<td>3 (43%)</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Step 1.2</td>
<td>1</td>
<td>14 (64%)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Step 2.1b</td>
<td>0</td>
<td>1</td>
<td>2 (33%)</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Step 3.1b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34 (92%)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Step 3.2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>22 (58%)</td>
<td>6</td>
</tr>
<tr>
<td>Step 3.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>13 (46%)</td>
</tr>
</tbody>
</table>

Note: Classifications correspond with CARS Model ‘moves’
The system makes the same mistakes as humans.
Results

- **Classification Accuracy (For different data sets)**
 - Number of features = 500
 - Ranked by chi² measure

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Accuracy (Ranked by chi²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Set 1</td>
<td>64 %</td>
</tr>
<tr>
<td>Data Set 2</td>
<td>62 %</td>
</tr>
<tr>
<td>Data Set 3</td>
<td>59 %</td>
</tr>
<tr>
<td>Data Set 4</td>
<td>56 %</td>
</tr>
<tr>
<td>Data Set 5</td>
<td>56 %</td>
</tr>
<tr>
<td>Ave.</td>
<td>59 %</td>
</tr>
</tbody>
</table>
Results

A ‘Windows’ Interface

- To enable researchers to use the system, it needs to be easily accessible via a ‘windows’ interface.

A prototype ‘windows’ system has been built using the programming language PERL 5.6.

- The system analyzes the structure of new texts.
- The structure suggestions can be edited/corrected.
- The new texts can be added to a database of training examples, which will then improve the system.
Conclusions

- A computer system was developed to analyze text structure
 - Learning method: ‘Supervised Learning’
 - Training examples: 554
 - Testing example: 138
 - Accuracy 64%

- System errors are similar to those made by humans

- The accuracy needs to be improved
 - Currently working on better feature selection
Conclusions

- The system runs in a ‘windows’ environment
- The system offers ‘suggestions’ which can be edited by the user
- The ‘windows’ interface needs to be enhanced
 - I hope to make a complete environment to help researchers solve many ‘supervised learning’ problems
 - Move analysis, Text categorization, Author authenticity etc.
Developing a Computer System for Automatically Identifying the Structure of Writing

Laurence Anthony

Dept. of Computer Science, Faculty of Engineering
Okayama Univ. of Science, 1-1 Ridai-cho, Okayama
anthony@ice.ous.ac.jp

http://antpc1.ice.ous.ac.jp