
Dealing With Big Data Outside Of The Cloud: GPU Accelerated Sort

John Vidler∗, Paul Rayson∗, Laurence Anthony†, Andrew Scott∗, John Mariani∗
∗School of Computing and Communications, Lancaster University

j.vidler, p.rayson, a.scott, j.mariani@lancaster.ac.uk
†Faculty of Science and Engineering, Waseda University

anthony@waseda.jp

Abstract
The demands placed on systems to analyse corpus data increase with input size, and the traditional approaches to processing this data
are increasingly having impractical run-times. We show that the use of desktop GPUs presents a significant opportunity to accelerate
a number of stages in the normal corpus analysis pipeline. This paper contains our exploratory work and findings into applying
high-performance computing technology and methods to the problem of sorting large numbers of concordance lines.

Keywords: Very Large Corpora, Concurrency, GPU Computing, High Performance Computing, Concordances, Sorting

1. Introduction
Corpus data is used in many areas of Digital Humanities,
Natural Language Processing, Human Language Tech-
nologies, Historical Text Mining and Corpus Linguistics.
Increasingly, however, the size of corpus data is becoming
unmanageable. In Digital Humanities, for example, na-
tional and international digitisation initiatives are bringing
huge quantities of archive material in image and full text
form direct to the historian’s desktop. Processing such data
quickly, on the other hand, will almost certainly exceed the
limits of traditional database models and desktop software
packages. Similarly, the “Web as a Corpus” paradigm
has brought vast quantities of Internet-based data to corpus
linguists. However, any search or sort of results from these
rich datasets is likely to take from minutes to hours to days
using desktop corpus tools such as WordSmith Tools1 and
AntConc2.
To address the problems of handling massive data sets,
international infrastructure projects, such as CLARIN and
DARIAH, are emerging with support for these large cor-
pora under the umbrella of ‘big data’. However, these
systems do not allow for local access, storage and retrieval
of large language resources to support researchers while
datasets are being collected and analysed. In corpus
linguistics, researchers now have access to tools such as
Sketch Engine3 and the family of BYU Corpora4, which
aim to support pre-compiled billion-word corpora. Again,
though, these systems are remotely hosted, and they are
also not easy to configure for the new datasets of local
researchers. More recently, semi-cloud based systems
are emerging, such as GATE5, Wmatrix6, and CQPweb7,
which can provide users with local access to large data
sources. However, the installation and configuration of
such systems is far from simple, making them inaccessible

1http://www.lexically.net/wordsmith/
2http://www.antlab.sci.waseda.ac.jp/

software.html
3http://www.sketchengine.co.uk/
4http://corpus.byu.edu/
5http://gate.ac.uk/
6http://ucrel.lancs.ac.uk/wmatrix/
7http://cqpweb.lancs.ac.uk/

to most social science and humanities based scholars.

Hence, there is still a need to investigate processing effi-
ciency improvements for locally controlled and installed
corpus retrieval software tools and databases. Core tasks
such as corpus indexing, calculating n-grams, creating
collocations, and sorting results on billion-word databases
cannot feasibly be carried out on current desktop computers
within a reasonable time.

In this paper, we describe an alternative solution to ac-
celerate such tasks by capitalizing on the local processing
power of the often underused discrete Graphics Processing
Unit (GPU). To highlight the possibilities of our approach,
we focus on the task of concordance results sorting and
show how GPU hardware can dramatically shorten the time
needed to complete the task. This research forms our first
case study in a larger project to investigate the untapped
potential in current operating system architecture designs.

2. Background

As corpus sizes increase, the problems of processing large
datasets are become more pressing. Research on high
performance processing techniques for the amounts of text
that the language resources community often works with is
scant at best, and generally revolves around large numbers
of traditional processors being used to divide the work into
manageable units. Unfortunately, with corpora exceeding
the multi-billion-word mark, even these measures are un-
able to complete experiments within reasonable time, often
spanning days of operation (Wattam et al., 2014). In addi-
tion, enhancements designed for other areas of computing,
e.g., Cederman and Tsigas (2010) and Rashid et al. (2010)
have proved to be not well suited to corpus processing. In
recent years, high-performance, general-purpose graphics
processing units have become increasingly available to the
scientific community, and projects utilising them have been
met with considerable success as described in Deng (2010),
Melchor et al. (2008) and Sun et al. (2012). On the other
hand, their use in corpus linguistics and natural language
processing has been limited at best, and many areas of their
uses have yet to be explored.

21



the crowds of inquisitive people began to diminish and soon there were no more visitors Madame Caravan returning to her own
already to regard the corpse as though it had been there for months He even went the length of declaring that

He even went the length of declaring that as yet there were no signs of decomposition making this remark just at
the girl who had ascended the stairs were distinctly heard There was silence for a few seconds and then the child

in their places and was ready to go downstairs when there appeared before her her son and daughter-in-law Caravan rushed forward
agree to be bound by the terms of this agreement There are a few things that you can do with most

full terms of this agreement See paragraph C below There are a lot of things you can do with Project

Figure 1: A sample of the input set used for testing the sorting algorithms.

3. Method
To evaluate the potential gains of using General Purpose
Graphics Processing unit (GPGPU) techniques for corpus
retrieval operations, we chose to focus on one of the most
common and time consuming tasks that corpus linguists
need to perform, i.e., sorting the concordance lines gen-
erated from a database query. Once concordance lines are
extracted or displayed in a corpus retrieval system, corpus
linguists need to identify language patterns in the results
set. Due to the large number of results, the concordance
lines cannot be skim read manually, and so some pre-
processing is required, typically sorting. Most concor-
dancing tools, such as WordSmith Tools and AntConc,
can perform a multi-level sort of the results based on the
preceding and/or following words. However, this can be
a very lengthy operation, especially when many hundreds
of thousands of concordance lines emerging from large
corpora require processing.
The words we targeted for the corpus sort experiment were
taken from the published BNC frequency lists of “Word
Frequencies in Written and Spoken English” (Rayson et.
al)8, which were used with a corpus generated from the
Gutenburg Project books data9 to generate CSV input sets
as shown in Figure 1. These were loaded into memory in
full, and stored such that the entire concordance was kept
in RAM. While this may seem suboptimal, we did this to
attempt to present data that represented the performance of
the GPGPU device, rather than memory usage tricks. Ad-
ditionally, the batch-processing style of operation used in
GPGPU computing limits our ability to do most traditional
sorting techniques for large datasets, such as an external
merge sort, as the GPU does not support the recursion
depth required to process this data. Following the above
procedure, we could reduce the problem to an entirely data
oriented issue and avoid the characteristics of disks, buses,
networks and other hardware components interfering with
the performance measures.
Based on a preliminary investigation of different sorting
algorithms, we found most to be data-copy sensitive (re-
quiring many short batch operations and many host-device
memory copies). Thus, we settled on using the simplest
sorting technique, the swapping sort, for the analysis here.
In the swapping sort, concordance lines are directly loaded
into memory on the graphics card and processed in place
by comparing each line to its immediate neighbours in the
input set, and swapping the entries if they are incorrectly

8http://ucrel.lancs.ac.uk/bncfreq/flists.
html

9http://www.gutenberg.org/wiki/Gutenberg:
The_CD_and_DVD_Project

ordered. This is repeated until the entire set is sorted. While
this technique would be extremely inefficient on a CPU, it
works impressively well on a GPU, as we can perform large
batches (over 27,000 entries, on a nVidia GTX Titan) at
once. The relevant specifications of the machine used for
these tests is described in Figure 2.

• CPU: Intel “Sandy Bridge” i7, desktop edition
(quad core with hyperthreading support).

• GPU: nVidia “GTX Titan” graphics card, 6GB
video memory.

• RAM: 6GB Triple Channel memory.
• Disk: A generic 64GB 6GB/s SSD

Figure 2: The specification of the machine
used to perform the tests.

While the exact specification for the hardware is not par-
ticularly critical, to achieve similar results, the use of a
GTX Titan or better is recommended, as older cards have
smaller video memory areas, resulting in higher instances
of copying to and from the hard drive. The SSD is not
required, but was used for these tests to expediate the test
duration through eliminating the delays normally incurred
through using mechanical disks.

4. Results
The results of our tests can be seen in Figures 3 and 410.
Each sort phase used up to 10 words to the right of the
selected collocation word to sort the concordance against
its neighbours. Phases were repeated until a phase resulted
in no swap operations, and thus, the set was completely
sorted.
As can be seen in Figures 2 and 3, the GPU accelerated
sort consistently beats the sort on a normal CPU except
for very small input sets. Below an input set size of
2000 concordance lines, the CPU has a slight advantage,
as the GPU has a small delay involved with deploying
CUDA kernels11, causing the overall throughput to dip. On
the other hand, beyond 2000 concordance lines, the GPU
is several orders of magnitude faster than the CPU, and
remains consistently better throughout.

5. Discussion and Conclusions
The results here show that normal CPU processing becomes
impractical when sorting beyond 40,000 concordance lines.

10The data for these plots as well as additional data
can be found at http://johnvidler.co.uk/academia/
cmlc-2014/

11A CUDA kernel is the GPGPU equivalent of a CPU thread

22



Figure 3: The measured CPU and GPU performance measurements shown on the same axis. Beyond 40,000
concordance lines, the sorting technique took so long to complete on the CPU as to be useless, while the
GPU continued to perform exceptionally well. Note that the y-scale is logarithmic.

Figure 4: The first portion of Figure 3, showing the initial CPU advantage for very small numbers of
concordance lines.

In contrast, our framework for GPU processing allows
such operations to be completed exceedingly quickly, e.g.,
with 10 million concordance lines being processed per
second even with large datasets. Further gains can be made
through the use of threading on GPGPU devices, although
the library support available to the developer is not what
one would expect. This leads to problems implementing
more traditional sorting algorithms, such as external merge
sorting, with such a large input set. Many traditional
sorting algorithms require access to the hard drive and other
resources that are unavailable to the card during runtime.
The processing used in our tests is best described as ‘out-
of-data-path’ processing, as the data would not naturally be
processed where we are processing it. Normally one would
expect that moving the data further from where it is stored
would result in slower overall performance. However, with
the immense processing power available in a GPU, once

there, the gains more than make up for the longer data
path. Of course, while out-of-data-path processing may not
be ideal from a memory utilization perspective, our results
show that the performance benefits are worth the additional
overhead in the application described here and indeed, our
approach is likely to be useful in many other areas of
natural language processing. In conclusion, our results
show that the implementation of even simple algorithms
on GPU hardware has significant promise for linguistic
analysis of large corpora. Our approach thus has important
implications for the development of more powerful desktop
linguistic analysis tools. Given the performance shown in
the case study presented in this paper, we next intend to
implement other standard corpus retrieval operations using
our framework. Following this, we will start implementing
support tools for various other corpus annotation and NLP
operations, e.g. Part-Of-Speech (POS) tagging.

23



References
Daniel Cederman and Philippas Tsigas. Gpu-quicksort:

A practical quicksort algorithm for graphics proces-
sors. J. Exp. Algorithmics, 14:4:1.4–4:1.24, January
2010. ISSN 1084-6654. doi: 10.1145/1498698.
1564500. URL http://doi.acm.org/10.1145/
1498698.1564500.

Yangdong Steve Deng. IP routing processing with graphic
processors. 2010 Design, Automation & Test in Europe
Conference & Exhibition (DATE 2010), pages 93–98,
March 2010. doi: 10.1109/DATE.2010.5457229. URL
http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5457229.

Carlos Aguilar Melchor, Benoit Crespin, Philippe Ga-
borit, Vincent Jolivet, and Pierre Rousseau. High-
Speed Private Information Retrieval Computation on
GPU. In Proceedings of the 2008 Second International
Conference on Emerging Security Information, Systems
and Technologies, pages 263–272, Washington, DC,
USA, August 2008. IEEE Computer Society. ISBN
978-0-7695-3329-2. doi: 10.1109/SECURWARE.2008.
55. URL http://portal.acm.org/citation.
cfm?id=1447563.1447928.

Layali Rashid, WessamM. Hassanein, and MoustafaA.
Hammad. Analyzing and enhancing the parallel
sort operation on multithreaded architectures. The
Journal of Supercomputing, 53(2):293–312, 2010.
ISSN 0920-8542. doi: 10.1007/s11227-009-0294-5.
URL http://dx.doi.org/10.1007/
s11227-009-0294-5.

Weibin Sun, Robert Ricci, and Matthew L. Curry. GPU-
store. In Proceedings of the 5th Annual International
Systems and Storage Conference on - SYSTOR ’12,
pages 1–12, New York, New York, USA, 2012. ACM
Press. ISBN 9781450314480. doi: 10.1145/2367589.
2367595. URL http://dl.acm.org/citation.
cfm?id=2367595.

Stephen Wattam, Paul Rayson, Marc Alexander, and Jean
Anderson. Experiences with Parallelisation of an Exist-
ing NLP Pipeline : Tagging Hansard. In Proceedings of
The 9th edition of the Language Resources and Evalua-
tion Conference, 2014.

24


